Distributed Streaming Classification: Related Work

In this post, I plan to write some quick recap of related works in Distributed Streaming Classification, focusing on decision tree induction. It is still related to my thesis in Distributed Streaming Machine Learning Framework. I divide this post into four sections: Classification, Distributed Classification, Streaming Classification, and Distributed Streaming Classification. Without further ado, let’s start with Classification

Classification

Classification is a type machine learning task which infers a function from labeled training data. This function is used to predict the label (or class) of testing data. Classification is also called as supervised learning since we use the actual class output (the ground truth) to supervise the output of our classification algorithm. Many classification algorithms have been developed such as tree-based algorithms (C4.5 decision tree, bagging and boosting decision tree, decision stump, boosted stump, random forest etc), neural-network, Support Vector Machine (SVMs), rule-based algorithms(conjunctive rule, RIPPER, PART, PRISM etc), naive bayes, logistic regression and many more.

Continue reading Distributed Streaming Classification: Related Work

Hoeffding Tree for Streaming Classification

In the previous post, we have summarized C4.5 decision tree induction. Well, since my thesis is about distributed streaming machine learning, it’s time to talk about streaming decision tree induction and I think it’s better start with defining “streaming machine learning” in general.

Streaming Machine Learning

Streaming machine learning can be interpreted as performing machine learning in streaming setting. In this case, streaming setting is characterized by:

  • High data volume and rate, such as transactions logs in ATM and credit card operations, call log in telecommunication company, and social media data i.e. Twitter tweet stream or Facebook status update stream
  • Unbounded, which means these data always arrive to our system and we won’t be able to fit them in memory or disk for further analysis with the techniques. Therefore, this characteristic implies we are limited to analyse the data once and there is little chance to revisit the data

Continue reading Hoeffding Tree for Streaming Classification